
Slippery diffusion-limited aggregation

Clair R. Seager1,* and Thomas G. Mason2,†

1Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA
2Department of Physics and Astronomy, Department of Chemistry and Biochemistry, and California NanoSystems Institute,

University of California—Los Angeles, Los Angeles, California 90095, USA
�Received 22 August 2006; published 18 January 2007�

Colloidal particles that interact through strong, short-range, secondary attractions in liquids form irreversible
“slippery” bonds that are not shear-rigid. Through event-driven simulations of slippery attractive spheres, we
show that space-filling fractal clusters still emerge from the process of “slippery” diffusion-limited aggregation
�DLA�. Although slippery and classic DLA clusters have the same fractal dimension, df=2.5, their average
coordination numbers are quite different: �zS�=6 whereas �zC�=2. Local tetrahedral attractive jamming of the
particles leads to a structure factor, S�q�, that exhibits dense cluster peaks at higher wave numbers, q, and a
fractal power-law rise toward lower q.

DOI: 10.1103/PhysRevE.75.011406 PACS number�s�: 61.43.Hv, 61.43.Bn, 82.70.Dd, 05.70.Ln

A large class of beautiful and intricate structures can
emerge through nonequilibrium aggregation processes in-
volving attractive particles. For extremely dilute particle vol-
ume fractions, �, solid colloids that diffuse through a con-
tinuous liquid phase can aggregate with strong shear-rigid
bonds to form tenuous fractals through classic diffusion-
limited aggregation �DLA� �1,2�. When solid gold particles
in solution enter a primary minimum in their pair interaction
potential, due to van der Waals attractions, they physically
touch, forming a shear-rigid contact �3–5�; the fractal dimen-
sion, df, of DLA in three-dimensions is 2.49 �2�. At higher �,
DLA clusters can aggregate with other neighboring clusters
and form percolating gel structures through diffusion-limited
cluster aggregation �DLCA� with df�1.9 �6–9�. In reaction-
limited aggregation �RLA�, particles can unbind from the
cluster with a certain probability and later rejoin the cluster,
producing fractal RLA clusters �7,10�. In DLA, RLA, and
other forms of nonequilibrium growth, including Eden
growth �11,12�, thermodynamics cannot describe the struc-
tures because the growth depends upon the kinetic history of
how particles attach to the cluster.

Shear-rigid bonds are only one important case: two liquid
droplets cannot form a shear-rigid bond �13,14�. When a
deep, short-range “secondary” minimum, �, in their pair in-
teraction potential is created, they can become strongly at-
tractive, yet not form shear-rigid bonds �14,15�. Depletion
attractions between microspheres induced by polymer or sur-
factant micelles and also temperature-dependent surface
charge condensation effects can also create such short-range
secondary attractions �16–19�. If � is somewhat larger than
thermal energy, kBT, a dense liquidlike floc of particles
forms. However, if � is quenched, so ��kBT, the lubricated
particles become linked by irreversible “slippery” bonds,
precluding shear-rigidity, and a nonequilibrium structure
forms. Slippery bonds do not break, yet they still permit each
bound sphere in a pair to rotationally diffuse. Moreover, each

sphere can translationally diffuse over the surface of the
other. By contrast, shear-rigid bonding creates a rigid dumb-
bell, precluding internal dynamics. These differences in
bonding, although subtle, can strongly affect nonequilibrium
structures.

The impact of slippery bonding has been seen in neutron
scattering measurements of the wave-number-dependent
structure factor, S�q�, of aggregated nanoemulsion droplets.
Peaks at high q have been associated with the aggregation of
small dense clusters to form a tenuous fractal gel �13�. Con-
current real-space confocal microscopy studies of solid mi-
crospheres interacting through depletion attractions have also
revealed interconnected gels �20� and a piecewise S�q� with a
gap in the crossover between the particle-scale and the frac-
tal gel structures �19�. Both experiments support the conjec-
ture �14� that slippery-bonded spheres form tetrahedra that
can serve as rigid building blocks for tenuous and disordered
fractal aggregates and gels. Molecular dynamics simulations
have begun to address concentrated systems that form
through slippery interactions as a function of the well depth
�18,21–24�, yet the simplest DLA process involving slippery
bonds for �→0 of attractively jammed spheres �25� in three
dimensions remains unexplored.

In this paper, we use event-driven simulations to study
“slippery” diffusion-limited aggregation �SDLA�. Identical
spheres of radius, a, are released one at a time and diffuse
until they touch a growing cluster. After making contact,
each sphere is locked into the cluster using one of three
rules: �1� classic DLA �CDLA�: the sphere is rigidly attached
where it first touches; �2� equilateral DLA �EDLA�: the
sphere is locked into the node corresponding to the nearest
equilateral triangle on the cluster’s surface; and �3� slippery
DLA: the sphere is locked into the node formed by the near-
est triangle, whether equilateral or not. We show that SDLA
and CDLA have essentially the same df, yet the mass-
distance scaling curve reveals locally dense tetrahedral struc-
tures for SDLA. The probability distributions of nearest
neighbors yield an average coordination number for SDLA
of �zS�=6.0, whereas, CDLA has only �zC�=2.0. For SDLA,
the distribution of edge-lengths of the nonequilateral triangu-
lar bases exhibits pronounced peaks corresponding to special
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local packing configurations that are frequently encountered.
The calculated structure factor for SDLA shows characteris-
tic features of locally dense particle jamming at high q and
fractal scaling toward low q. This predicted S�qd�, where d
=2a, captures many of the essential features found in recent
experiments.

CDLA clusters are made using the method of Witten and
Sander �1,2�. A “seed” sphere is fixed; additional spheres are
released one at a time and perform a random walk. If a
diffusing sphere touches the cluster, then it is rigidly bonded
to the cluster. Spheres that diffuse too far away from the
cluster are discarded and a new sphere is injected. The dis-
tance of each newly injected sphere to the cluster is opti-
mized to reduce the diffusion time �2�. A list of nearest
neighbors is updated as particles are added to the cluster.
CDLA clusters are tenuous fractals and have spindly local
structures �Fig. 1�a��.

In EDLA, the first four spheres form an equilateral tetra-
hedral “seed.” Spheres are injected as for CDLA, yet when a
diffusing sphere encounters the growing cluster, nearest-
neighbor distances in the cluster are used to determine if a
node corresponding to an equilateral triangular face on the
surface of the cluster is immediately adjacent to the first-
encountered sphere. If so, the diffusing sphere is locked into

that node. If not, the trial is discarded. Thus EDLA clusters
are comprised entirely of equilateral tetrahedra. EDLA en-
forces locally dense jamming of spheres with only one bond
angle and provides a first step towards modeling the effects
of diffusion of slippery spheres on the cluster’s surface.
Strikingly, EDLA also creates a fractal cluster �Fig. 1�b��;
EDLA aggregate arms �inset� are dense compared to the
spindly structures of CDLA.

Since nonequilateral triangular nodes can also capture
spheres, we have created a more realistic algorithm, SDLA,
that locks spheres into the nearest viable equilateral and non-
equilateral triangular sites on the growing cluster. SDLA ef-
fectively models the most probable final location of a newly
added sphere after it touches the cluster, diffuses over the
cluster’s surface, and locks into a nearby node. SDLA clus-
ters �Fig. 1�c�� are fractal yet more compact than either
CDLA or EDLA clusters. The event-driven simulation can
omit very rare events of bridging of a single sphere captured
between two proximate spheres in neighboring arms of the
cluster which nearly touch. Such “bridging” spheres never
lock into a node and retain some translational freedom that
could affect dynamics �26�, yet they influence the average
static structure very little.

We obtain df for CDLA, EDLA, and SDLA clusters by

FIG. 1. �Color online� Aggregates �N=50 000 spheres� obtained by �a� CDLA: classic shear-rigid bonding, �b� EDLA: each newly added
sphere jams into the nearest node formed by an equilateral triangular face, and �c� SDLA: each newly added sphere jams into a node formed
by any triangular face. Insets show detailed views of cluster tips. Scale bars represent 40 sphere radii �at the cluster’s center�. Colors encode
the order of release of the particles, and n refers to the release number.
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plotting the dimensionless mass, m /m0, versus dimensionless
radius, r /a, in log-log format in Fig. 2. For the smallest r /a,
discreteness due to limited statistics is seen, yet for larger
r /a, m /m0 becomes smooth and straight, following �m /m0�
��r /a�df. Surprisingly, for all three simulation types, we find
df=2.5±0.1. The result for CDLA is consistent with earlier
simulations �2�. Although EDLA closely resembles SDLA in
the inner regions of the cluster, the equilateral constraint of
EDLA creates thinner arms at the extremities; this can be
seen by an earlier departure from the power-law scaling for
EDLA toward high r /a. For all types of DLA, as r ap-
proaches the length of the cluster’s longest arm, the fractal
scaling regime ends due to the cluster’s finite size, and m /m0
saturates to N.

The scaling behavior of m /m0 for slippery DLA can be
shifted onto the classic DLA result by simply multiplying
r /a by a factor of 1.5 �Fig. 2 �inset��. After rescaling, the
overlap is excellent over a wide range of r /a above the limit
where discreteness effects are seen. Overall, the factor of 1.5
is consistent with half of the separation between the centers
of two interlocked tetrahedra. Such tetrahedra made of four
spheres each have four dimpled faces that can rigidly inter-
lock with other tetrahedra through slippery bonds. Since tet-
rahedra added randomly to a growing cluster do not pack
with long range order to fill space, the growing cluster will
not be a dense crystal but instead will be a tenuous fractal. In
essence, SDLA clusters can be created by taking CDLA clus-
ters and replacing the spheres that form shear rigid bonds
with rigidly interlocking tetrahedra.

The probability density distributions, pz�z�, of the local
coordination number, z, obtained from the neighbor lists are
shown in Fig. 3. For CDLA, pz peaks at two nearest neigh-
bors, corresponding to rigid chains of spheres, and the aver-
age is �zC�=2.0. Branched structures with three neighbors are
common, but branches with four or more neighbors are rela-
tively rare. By contrast, for EDLA and SDLA, pz=0 for z

�3, consistent with rules that demand tetrahedral structures.
For EDLA, the relatively high probability at z=3 results
from the large number of spheres that have recently joined
the surface of the cluster. For SDLA pz resembles EDLA in
shape, and the maximum still occurs at �zS�=6.0, yet the
surface contribution at z=3 is smaller, consistent with com-
pact branch tips. In Fig. 3 �inset�, we show the edge length
distribution pl�l /d� of the triangles on the surfaces of SDLA
clusters into which incoming spheres are locked. The spikes
in this distribution that occur at l /d=1.08 and higher values
reflect edge lengths of special triangles due to local packing
arrangements that are frequently encountered.

The structure factor calculated for SDLA is shown in Fig.
4. The peaks at high qd are more pronounced than for
CDLA, since SDLA has a larger �z� and a denser local struc-
ture, yet no long-range order. As qd decreases from the larg-
est peak, S goes through a minimum and begins to increase

FIG. 3. �Color online� Normalized probability distribution of
local coordination number, pz�z�, for CDLA �zC�=2.0 ���; EDLA
�zE�=6.0 ���; and SDLA �zS�=6.0 ���. Inset: the distribution of
dimensionless edge lengths, pl�l /d�, of triangular bases prior to add-
ing a new sphere for SDLA. The isosceles base triangle �white
spheres�, has an edge length of 1.08, accounting for the peak
�arrow�.

FIG. 4. �Color online� Structure factor, S�qd�, vs dimensionless
wave number, qd, for aggregates formed by CDLA �dashed line�
and SDLA �solid line�. Nearest-neighbor peaks at high qd are more
pronounced for SDLA. Inset: comparison of S�qd� calculated for
SDLA �line� to neutron scattering measurements of slippery na-
noemulsion droplets �points�.

FIG. 2. �Color online� Mass, m, of the fraction of the cluster
enclosed within an imaginary sphere of radius, r, which is centered
on a starting seed particle: classic DLA ���, equilateral DLA
�dashed line�, and slippery DLA ���. The axes are normalized by
the mass, m0, and the radius, a, of a single spherical particle, re-
spectively. The solid lines are fits in the scaling region, yielding
df =2.5±0.1. Inset: classic and slippery DLA scale together when
r /a for SDLA is multiplied by 1.5.
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again, reflecting the scattering from the larger-scale fractal
structure. The position and magnitude of the first and second
peaks and the magnitude of the minimum at lower qd of the
measured S�qd� from neutron scattering of uniform na-
noemulsions at ��0.05 �13� are reasonably well-described
by SDLA �inset�. The nanoemulsion’s S results from a slip-
pery cluster-cluster aggregation process, which is different
than SDLA as �→0, so a deviation toward the lowest qd is
expected.

SDLA is an important limiting case of attractive colloidal
glasses that can be formed over a larger range of � and �. It
provides a clear particle-scale picture that shows how tenu-
ous fractal clusters can still be formed even when attractive
bonds are not shear-rigid. The slippery attractive jamming of
spherical particles creates clusters at high z that are com-
prised of locally dense tetrahedra; the resulting corrugation
on the cluster’s surface leads to nodes that quickly trap
newly added particles and prevent further surface diffusion.
As conjectured �14�, these local tetrahedra act as larger res-
caled anisotropic “particles” that aggregate through shear-
rigid bonds to form globally disordered structures with the

same df as CDLA. For this reason, observations of fractal
structures and gels may be incorrectly interpreted as arising
from CDLA rather than SDLA. By analogy, one would ex-
pect slippery DLCA �SDLCA� to also have df�1.9, corre-
sponding to classic DLCA formed with shear-rigid bonds.
Indeed, this prediction is in reasonable accord with light
scattering measurements yielding df�1.8 for microscale
emulsions �15,27,28�.

Slippery DLA opens the door to many exciting future di-
rections. By building many SDLA clusters simultaneously
and allowing these clusters to diffuse and connect, it will be
possible to create SDLCA structures, including tenuous net-
works and percolating gels. Introducing polydispersity and
nonspherical building blocks will give rise to new and inter-
esting slippery aggregation phenomena. Further statistical
analyses of SDLA and SDLCA clusters will provide addi-
tional insight into attractively jammed systems.
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